Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lignin peroxidase ligand access channel dysfunction in the presence of atrazine.

Identifieur interne : 000109 ( Main/Exploration ); précédent : 000108; suivant : 000110

Lignin peroxidase ligand access channel dysfunction in the presence of atrazine.

Auteurs : János Ecker [Hongrie] ; Lászl Fülöp [Hongrie]

Source :

RBID : pubmed:29662099

Descripteurs français

English descriptors

Abstract

Studies have determined that the white-rot basidiomycete Phanerochaete chrysosporium is capable of biodegrading the atrazine herbicide with its broad-specificity enzymes, but the particular role of biocatalysts is still unclear. In the case of lignin peroxidase, a ligand access channel connected to the active heme cofactor provides access to the active site for potential small-sized substrates. Experimental results show that lignin peroxidase is unable to degrade atrazine, therefore, the primary goal was to determine whether there is any connection between the structural and dynamical properties of the enzyme and its incapability to degrade atrazine. The results of protein-ligand docking and molecular dynamics study correlate with relevant, published NMR and molecular dynamics data, and give the answer to the lack of atrazine degradation by lignin peroxidase which has already been established by numerous authors using experimental methods. Atrazine has no access to heme edge due to the electric charges of the delocalized s-triazine ring. The detected phenomenon suggests that the small size of the ligands only is not a sufficient condition to access the active site. Their physicochemical properties influence the structural behaviour of the channel.

DOI: 10.1038/s41598-018-24478-w
PubMed: 29662099
PubMed Central: PMC5902622


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lignin peroxidase ligand access channel dysfunction in the presence of atrazine.</title>
<author>
<name sortKey="Ecker, Janos" sort="Ecker, Janos" uniqKey="Ecker J" first="János" last="Ecker">János Ecker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Szent István University, Department of Chemistry, 2100, Gödöllő, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Szent István University, Department of Chemistry, 2100, Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fulop, Laszl" sort="Fulop, Laszl" uniqKey="Fulop L" first="Lászl" last="Fülöp">Lászl Fülöp</name>
<affiliation wicri:level="1">
<nlm:affiliation>Szent István University, Department of Chemistry, 2100, Gödöllő, Hungary. Dr.Fulop.Laszlo@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Szent István University, Department of Chemistry, 2100, Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29662099</idno>
<idno type="pmid">29662099</idno>
<idno type="doi">10.1038/s41598-018-24478-w</idno>
<idno type="pmc">PMC5902622</idno>
<idno type="wicri:Area/Main/Corpus">000114</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000114</idno>
<idno type="wicri:Area/Main/Curation">000114</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000114</idno>
<idno type="wicri:Area/Main/Exploration">000114</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lignin peroxidase ligand access channel dysfunction in the presence of atrazine.</title>
<author>
<name sortKey="Ecker, Janos" sort="Ecker, Janos" uniqKey="Ecker J" first="János" last="Ecker">János Ecker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Szent István University, Department of Chemistry, 2100, Gödöllő, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Szent István University, Department of Chemistry, 2100, Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fulop, Laszl" sort="Fulop, Laszl" uniqKey="Fulop L" first="Lászl" last="Fülöp">Lászl Fülöp</name>
<affiliation wicri:level="1">
<nlm:affiliation>Szent István University, Department of Chemistry, 2100, Gödöllő, Hungary. Dr.Fulop.Laszlo@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Szent István University, Department of Chemistry, 2100, Gödöllő</wicri:regionArea>
<wicri:noRegion>Gödöllő</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atrazine (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Heme (chemistry)</term>
<term>Heme (metabolism)</term>
<term>Herbicides (metabolism)</term>
<term>Molecular Docking Simulation (MeSH)</term>
<term>Peroxidases (chemistry)</term>
<term>Peroxidases (metabolism)</term>
<term>Phanerochaete (chemistry)</term>
<term>Phanerochaete (enzymology)</term>
<term>Phanerochaete (metabolism)</term>
<term>Protein Conformation (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Atrazine (métabolisme)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Herbicides (métabolisme)</term>
<term>Hème (composition chimique)</term>
<term>Hème (métabolisme)</term>
<term>Peroxidases (composition chimique)</term>
<term>Peroxidases (métabolisme)</term>
<term>Phanerochaete (composition chimique)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Simulation de docking moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Heme</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Atrazine</term>
<term>Heme</term>
<term>Herbicides</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Hème</term>
<term>Peroxidases</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Atrazine</term>
<term>Herbicides</term>
<term>Hème</term>
<term>Peroxidases</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Catalytic Domain</term>
<term>Molecular Docking Simulation</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Domaine catalytique</term>
<term>Dépollution biologique de l'environnement</term>
<term>Simulation de docking moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Studies have determined that the white-rot basidiomycete Phanerochaete chrysosporium is capable of biodegrading the atrazine herbicide with its broad-specificity enzymes, but the particular role of biocatalysts is still unclear. In the case of lignin peroxidase, a ligand access channel connected to the active heme cofactor provides access to the active site for potential small-sized substrates. Experimental results show that lignin peroxidase is unable to degrade atrazine, therefore, the primary goal was to determine whether there is any connection between the structural and dynamical properties of the enzyme and its incapability to degrade atrazine. The results of protein-ligand docking and molecular dynamics study correlate with relevant, published NMR and molecular dynamics data, and give the answer to the lack of atrazine degradation by lignin peroxidase which has already been established by numerous authors using experimental methods. Atrazine has no access to heme edge due to the electric charges of the delocalized s-triazine ring. The detected phenomenon suggests that the small size of the ligands only is not a sufficient condition to access the active site. Their physicochemical properties influence the structural behaviour of the channel.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29662099</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>04</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Lignin peroxidase ligand access channel dysfunction in the presence of atrazine.</ArticleTitle>
<Pagination>
<MedlinePgn>5989</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-018-24478-w</ELocationID>
<Abstract>
<AbstractText>Studies have determined that the white-rot basidiomycete Phanerochaete chrysosporium is capable of biodegrading the atrazine herbicide with its broad-specificity enzymes, but the particular role of biocatalysts is still unclear. In the case of lignin peroxidase, a ligand access channel connected to the active heme cofactor provides access to the active site for potential small-sized substrates. Experimental results show that lignin peroxidase is unable to degrade atrazine, therefore, the primary goal was to determine whether there is any connection between the structural and dynamical properties of the enzyme and its incapability to degrade atrazine. The results of protein-ligand docking and molecular dynamics study correlate with relevant, published NMR and molecular dynamics data, and give the answer to the lack of atrazine degradation by lignin peroxidase which has already been established by numerous authors using experimental methods. Atrazine has no access to heme edge due to the electric charges of the delocalized s-triazine ring. The detected phenomenon suggests that the small size of the ligands only is not a sufficient condition to access the active site. Their physicochemical properties influence the structural behaviour of the channel.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ecker</LastName>
<ForeName>János</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-0944-9029</Identifier>
<AffiliationInfo>
<Affiliation>Szent István University, Department of Chemistry, 2100, Gödöllő, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fülöp</LastName>
<ForeName>László</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-5827-881X</Identifier>
<AffiliationInfo>
<Affiliation>Szent István University, Department of Chemistry, 2100, Gödöllő, Hungary. Dr.Fulop.Laszlo@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>04</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006540">Herbicides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42VZT0U6YR</RegistryNumber>
<NameOfSubstance UI="D006418">Heme</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C042858">lignin peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>QJA9M5H4IM</RegistryNumber>
<NameOfSubstance UI="D001280">Atrazine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001280" MajorTopicYN="N">Atrazine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006418" MajorTopicYN="N">Heme</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006540" MajorTopicYN="N">Herbicides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>04</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29662099</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-018-24478-w</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-018-24478-w</ArticleId>
<ArticleId IdType="pmc">PMC5902622</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Sci Rep. 2017 Oct 24;7(1):13909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29066782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 1990 Dec;20(1):197-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24193974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cheminform. 2012 Aug 13;4(1):17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22889332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2013 Dec 15;34(32):2757-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24000174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci (China). 2001 Jan;13(1):99-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11590728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Aug 15;266(23):15001-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1869537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Feb;60(2):705-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph Model. 1999 Feb;17(1):57-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10660911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Aug;58(8):2402-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1514788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2013 Sep 30;34(25):2135-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23832629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 26;305(4):851-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11162097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2005 Dec;26(16):1781-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16222654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Dec;59(12):4342-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Dec;60(12):4297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7811069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Dec;68(12):5973-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12450818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cheminform. 2009 Sep 11;1:15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20150996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph. 1996 Feb;14(1):33-8, 27-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8744570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2017 Jan 30;38(3):133-143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27862038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Dec 8;7(1):17265</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29222497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Feb 26;286(3):809-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10024453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Feb;173(3):1215-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1846859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2001 Oct;57(1-2):20-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11693920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2003 Jun;84(6):3883-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12770894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1998 Jan;7(1):72-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9514261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Mar;63(3):862-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Feb 25;268(6):4429-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8440725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Sep;64(9):3368-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9726884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Oct 27;37(43):15097-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9790672</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Hongrie</li>
</country>
</list>
<tree>
<country name="Hongrie">
<noRegion>
<name sortKey="Ecker, Janos" sort="Ecker, Janos" uniqKey="Ecker J" first="János" last="Ecker">János Ecker</name>
</noRegion>
<name sortKey="Fulop, Laszl" sort="Fulop, Laszl" uniqKey="Fulop L" first="Lászl" last="Fülöp">Lászl Fülöp</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000109 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000109 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29662099
   |texte=   Lignin peroxidase ligand access channel dysfunction in the presence of atrazine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29662099" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020